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We study the relaxation of a degenerate two-level system interacting with a heat 
bath, assuming a random-matr ix  model for the system bath interaction. For 
times larger than the duration of a collision and smaller than the Poincar6 
recurrence time, the survival probability of still finding the system at time t in 
the same state in which it was prepared at t = 0 is exactly calculated. 
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1. I N T R O D U C T I O N  

The study of relaxation phenomena in quantum mechanical systems is of 
central importance in statistical mechanics, and various models have been 
presented in the literature for that purpose. 

A model which has frequently been employed in relaxation studies is 
that of a two-level system interacting with a heat bath. The literature on 
the subject is very extensive (see, for instance, Refs. 1-7 and references con- 
tained therein), since several systems of physical interest can be modeled in 
that simple way: for example, applications have been found in studies of 
spin-lattice relaxation, ~) paraelectric resonance relaxation, ~2) phenomena 
associated with the so-called molecular polaron, (3) and the effect of tunnel- 
ing friction ~4~ in the stabilization of optical isomers. ~5) For a discussion, 
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from a very general point of view, of the physics of a system (both classical 
and quantum mechanical) interacting with a reservoir, the reader may 
consult Ref. 8 and references contained therein. 

In relaxation problems, the process is frequently found to be insen- 
sitive to the details of the interaction, only a few "gross properties," such as 
the diffusion coefficient in the Brownian motion problem, being relevant for 
its description. This feature is not new in many-body problems, and has 
often been explicitly described by constructing a collection or ensemble of 
interactions (9) and calculating an ensemble average of the quantity of 
interest: if that quantity does not vary appreciably across the ensemble, it 
can be reasonably represented by its average; if that were not the case, one 
could certainly calculate the fluctuations of the given quantity across the 
ensemble. Various considerations on this "ergodic problem" can also be 
found in Ref. 9. 

The purpose of the present paper is to implement the philosophy of 
the previous paragraph in the study of the relaxation of a two-level system 
with a bath. The system is assumed to have no dynamics of its own, so 
that, if it were isolated, its two energy levels would be degenerate. We 
expect to be able to relax this assumption in the future. The bath has a 
Hamiltonian HB, and the system-bath interaction U is written as 

~/= Vax (1.1) 

where V depends only on the bath variables and the Pauli matrix ax on 
those of the system. It is the interaction V that is treated by means of a 
random-matrix model. 0) The total Hamiltonian of the problem is given by 

H = HB + U (1.2) 

Suppose that at t = 0 we prepare the system in an eigenstate, I1 ) say, 
of the Pauli matrix ~z, while the bath is in thermal equilibrium. Since "U 
can cause transitions between the two eigenstates of o-z, the problem that 
we pose is that of calculating the probability of still finding the system in 
state 11) at time t. 

We shall be able to show that the model just described can be solved 
exactly when the time t satisfies the inequalities 

tool1 ~ t <~ tp (1.3) 

where tco n and tp are times on the order of the duration of a collision (to be 
distinguished from the time between collisions!) and of the Poincar6 
recurrence time, respectively. The procedure, inspired by the one followed 
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in Ref. 10 to describe relaxation phenomena in nuclear physics, essentially 
consists in writing the above survival probability as a series expansion in 
powers of the interaction, averaging term by term and then summing up 
the full series. 

Assumptions on a phenomenological, random, time-dependent 
interaction are sometimes made in relaxation studies. (1115) In the present 
paper such assumptions are not needed, because we work with the full, 
time-independent Hamiltonian, and any time dependence should come out 
as a consequence of the model. We notice, incidentally, that the random- 
ness assumed for such a time-dependent interaction has an entirely different 
origin from the one considered in the present paper, since in standard 
statistical mechanical problems it is taken for granted that there exists o n e  

total Hamiltonian for the full problem, and not an ensemble of 
Hamiltonians as we consider here. 

The paper is organized as follows. In Section 2 we define with more 
precision the model outliried above; in particular, we discuss in detail the 
random-matrix ensemble that we propose for the system-bath interaction. 
The survival probability is written in that section as a series in powers of 
the interaction. Some representative terms of that series are evaluated in 
detail in Section 3; a graphical representation for them is given, which is 
highly advantageous for the evaluation of the most general term. The series 
can be summed, giving the final result (3.24) for the survival probability. 
Some features of the result are discussed in Section 4. Finally, Section 5 
gives the conclusions of this investigation. 

2. THE M O D E L  

As was outlined in the Introduction, the Hilbert space of the system 
consists of two states, which we designate by Ic~), ct= +1, assuming that 
they are eigenstates of the Pauli matrix a=; i.e., 

a~ l e ) = e  jc~), e =  _+1 (2.1) 

In addition, we denote by la)  a complete set of states of the bath, 
assuming that they are eigenstates of the bath Hamiltonian HB, with 
energy ea; i.e., 

(ea - HB) la)  = 0 (2.2) 

We shall denote by p(s) the density of bath states. The states [c~a) 
form a complete set for the system-bath combination, which is assumed to 
be governed by the Hamiltonian (1.2). 

822/51/1-2-6 
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At t = 0 the system is in state I~ = 1), while the bath is in thermal 
equilibrium, described by the canonical ensemble 

p i = e  ~i/Z (2.3) 

where Z is the bath partition function. 
The survival probability P(t), i.e., the probability that at time t we still 

find the system in state 11 ), regardless of the state of the bath, is given by 
(h=  1) 

P(t) = ~ I ( la j  e -ira [li)12p, (2.4) 
ia 

The transition probability P~ ~ ~ is given by 1 -  P. 
The evolution operator e x p ( - i H t )  for the full Hamiltonian (1.2) can 

be expanded in a power series of the interaction • of (1.1) as 

e - i m = e  -iHB' ( - i )  n dtn.. ,  dtz dtl ~U(tn). . .V(t2) U( t l )  (2.5) 
n=O 

where ~ ( t )  is the operator U expressed in the interaction representation; 
i.e., 

Y/(t) = ei'B'Y/'e-inB' = eiHBtVe inB,ax (2.6) 

We recall that V is a Hermitian operator. Substituting (2.6) in (2.5), 
and this in the expression (2.4) for the survival probability P(t), we observe 
that only the terms containing even powers of ax survive. Using also the 
Schr6dinger equation (2.2) for HB, we have 

P ( t ) : E P '  Z ( - - ) " + q  E E V i a I V a l a 2 " ' ' V a 2 p - l a V a b 2 q  , ' ' ' V b 2 b l V b l i ]  
i p,q=O a I ...a2p_ 1 

a, b2q _ 1 �9 " "b 1 

x exp iE(ei-  s~) tl + (e,~ - -  ga2) t2  + " '"  q- ( g a @ - t  - -  8 a ) t 2 p  

+ (Sa - -Sb2q  , ) f f 2 q +  "'" +(eb2--eb,)t'2+(eb,--ei)t'l] 

= E  Pi ~, PlP'q)(t) (2.7) 
i p,q=O 

which expresses our result as a sum of contributions coming from the 
various initial states i and the values taken by the variables p and q; the 
(pq) term is of order 2p + 2q. 
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We shall now be more specific about the random-matrix model 
assumed for V. We propose a local GOE (Gaussian orthogonal ensemble), 
an extension (used in Ref. 10), to be defined below, of the standard GOE. (9) 

The matrix elements Vab of the operator V, in the basis defined by 
(2.2), are assumed to form a real symmetric matrix and, aside from the 
symmetry requirement, they are considered as statistically independent 
Gaussian variables with zero mean and covariance given by 

Vab Vcd ) = V2(~ab)((~ad(~bc -~- 6ac(~bd ) WA(eab)(~,a -- C,b) (2.8) 

where the angular brackets denote an ensemble average. In other words, 
the only nonzero covariance is that of V~b with itself, or with Vb,. The 
quantity e,b--(ea+eb)/2 is the centroid of the two energies e,, eb. The 
weight factor w3(~ob)(e~-~b) is assumed to have the property 

1, I~a-ebl <A(e~b) (2.9) 
w~(~ab)(e~--e~)~ O, leo-e~l >A(ea~) 

thus indicating that the interaction V connects eigenstates of HB within an 
energy interval ~ A. The quantity 

tool1 ~ 1/zJ (2.10) 

which has dimensions of time (h=  1), is a time associated with one 
application of the interaction, and has been interpreted as the duration of a 
collision. (1~ As an example, in the simple problem of potential scattering in 
one dimension, it can be easily verified that too, is on the order of the time 
taken by the centroid of a wave packet to travel across the potential. 

We shall always assume that A contains many bath levels, and we 
shall allow for the possibility of a slow dependence of A on the bath energy. 
A slow dependence on ea of the strength of interaction v 2 and of the density 
p may also occur. 

We can thus visualize the matrix ]l Vab[[ as having appreciable elements 
inside a band of variable width 2A along the diagonal, as schematically 
represented in Fig. 1. 

We shall frequently encounter in what follows the quantity 
(V~b) P(~b) which, from (2.8), we write as 

( V L b )  p(e~) = v: (e~)  p ( ~ )  w~(~o~)(e~ - e~) (2.11) 

The above dependence on energy of v 2, p and A will be assumed to be 
so slow that these three quantities can be taken essentially constant inside 
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g a b  ~ ",,~ 
% 

%% 

Fig. 1. Schematic representation of the structure of the interaction matrix 11 vablr with the 
local GOE used in Eq. (2.8). Also indicated is a typical state i such that the full energy interval 
el_+ Ai to which it is connected by the interaction is not cut out by the lower bound of the 
bath spectrum. 

the interval where (2.11) is nonzero;  we can then write V 2 ( e a b ) ~ ) 2 ( e a ) ~ , ~  

V2(eb), and similarly for p and A. We then write 

(V~a~) p(~) ~ V2(~o) p(~o) W~o(~O-- ~) 

= u2(e~,) W~o(~a -- ~b) (2.12) 

where Aa = A(e~). 
We close this section by indicating that  our  goal is now the calculation 

of the ensemble average of the survival probabil i ty P(t )  of Eq. (2.7), which 
can then be written as a sum over the various i, p, q contr ibut ions as 

(P(t))=~p, ~, (PlP'q)(t))=~pi(Pi(t)) (2.13) 
i p,q=O i 

where each contr ibut ion satisfies the relation 

(P~P, qJ(t) ) = (Plq'P)(t) ) * (2.14) 

This p rogram will be carried out in the next section. 

3. C A L C U L A T I O N  OF T H E  S U R V I V A L  P R O B A B I L I T Y  

We first calculate in detail some representative terms in the expansion 
(2.13). It will then be easy to infer the general rules and apply them to the 
calculation of the survival probability. 
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3.1. S o m e  Par t icu la r  T e r m s  in the  Expansion (2 .13 )  

1. The term p = 0 ,  q = 0  just gives 1. 

2. The term p =  1, q = 0  is given by [see (2.7)] 

La ] (Pll'~ = - dt 2 dtl (Vi2) ei( . . . .  )(q '2) (3.1) 

We now concentrate on the calculation of the quantity in square 
brackets, which, as we shall see, appears systematically in the more com- 
plicated terms. The sum over a can be replaced by an integral if the 
exponential varies only negligibly from one level e, to the next; for this to 
happen, one needs times such that 

Dt ,~ 1 (3.2a) 

where D is the mean level spacing. This can be looked on as a large-volume 
limit. If lID is interpreted as the Poincar6 recurrence time tp, we thus need 

l ,~ tp (3.2b) 

which is certainly satisfied. We shall neglect the fact that for the single term 
i=a,  (VZa) is twice as big as for an off-diagonal term [see Eq. (2.8)]; it 
can be easily checked that the relative error that we make is of the order of 
t/p(ei)~ t/tp(i), which is negligible. We thus use (2.12) to write 

(Vi2~) ei~"-~~ w~,(ei-ea)e i( . . . .  )* d~ 
a 

--u2(,~i) f wzii(x)e-iXr dx=-u2(c,i) ff2i('c) (3.3) 

We shall consider initial bath states i like the one indicated in Fig. 1, 
such that the full energy interval ei + / I / t o  which they are connected by the 
interaction is not cut out by the lower bound of the spectrum; for a given 
temperature, we shall assume that the relevant ei satisfy this condition. If 
the structure of the matrix V were as indicated in Fig. 1, our analysis would 
thus be valid above a certain minimum temperature To (depending on the 
specific structure of the matrix), in order to avoid any "threshold effect." 
We shall see that above To the result does not depend on the specific value 
ofLJ i. 

Under these conditions, ~i(r) of Eq. (3.3) is real, symmetric in r, 
appreciable only inside the interval 1/A i of the variable r, and has the 
property 

fcc, lVi('/7) = 2rcw,~i(O) = (3.4) dr 27z 
--oo 



84 Mello, Pereyra, and Kumar 

We recall that #i(r) has to be used inside the time integral of Eq. (3.1); 
therefore, for time intervals much larger than 1/A i [which was interpreted 
in (2.10) as the duration of a collision], we essentially get the same result if 
we replace #~(r) by 2tea(r). This approximation is independent of the 
strength v 2 of the interaction appearing in (2.11) and depends only on the 
quantity A. It may be useful to work out a simple example to check the 
approximation. Suppose that 

Then 

w a(x ) = e  x2/2A2 

~A('~) = ( 2 ~ d 2 )  '/2 e A2~2/2 

We can evaluate exactly the integral that will be relevant for (3.1) as 

;o ;o dt2 dt~ ~ ( t l - t 2 ) = T z t e r f  tA _(2~)~/2 A te_~2~2/2xd x 

if tA > 1. This is indeed the same result that we would obtain by replacing 
#(r) --, 2=6(r) and realizing that the tl integration goes only up to t2, thus 
covering "half of the a-function" and giving rise to a factor 1/2. 

We thus write (3.3) as 

y~ 2 �89 a(~) (3.5) ( Vi" ) ei(~,- ~a, = 
a 

where, for later convenience, we have defined 

F(e) =- 4~ru2(e) (3.6) 

To summarize, the times involved in the problem are assumed to 
satisfy the inequalities 

tool1 '~ t ,~ tp (3.7) 

We thus get, for the (1, 0) term of (3.1) 

F(g/)/2 
( P l l " ~  = ~ t (3.8) 

In preparation for the analysis of the more complicated terms, it will 
be useful to introduce a graphical representation for the term we have just 
calculated. In Fig. 2 and the following ones, we indicate two time intervals, 
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t i m e  t i m e  

0 h t 0 

Fig. 2. Graphical representation of the p =  1, q = 0  term of Eq. (3.1). 

from 0 to t, which should contain, respectively, the 2p and 2q ordered time 
variables of Eq. (2.7). In the present (1, 0) case, Eq. (3.1) just contains tl 
and t2, which are indicated in Fig. 2. The line joining them, to be called a 
c o n t r a c t i o n ,  indicates the ensemble average of the two corresponding V's 
[remember that in Eq. (2.5) every ti has a U(t~) associated with it]. It is 
clear that our result (3.8) can be written at once from the diagram, follow- 
ing the rules: 

(a) Assign to the contraction a factor F(~)/2. 

(b) Assign to the contraction an extra factor 1/2 [whose origin is 
explained above Eq. (3.5)]. 

(c) The two times t 1 and t2 are reduced to a single one [due to the 
6-function (3.5)], to be integrated from 0 to t; that integration 
gives a factor t. 

Finally, we see from Eq. (2.14) that the p =0 ,  q = 1 term gives the 
same contribution (3.8), so that to f i r s t  o r d e r  we have 

and 

P i ( t )  = 1 - F ( a , ) ( t / 2 )  + . . .  (3,9) 

P , . I  ~ - 1  = F ( e , ) ( t / 2 )  + . . .  (3.10) 

Result (3.10) coincides with that obtained from the "golden rule" of 
quantum mechanics, ~16) where a restriction on time similar to (3.7) also 
appears, the role of A being played by the energy interval over which Vi~ 
varies appreciably. The structure of the matrix V indicated in Fig. 1 is not 
required to obtain the golden rule, though; however, it turns out to be very 
useful in the evaluation of the higher order terms of the series, as we shall 
see. 

3. The higher order terms will be calculated using a well-known 
theorem of statistics~9'l~ in order to calculate the average of a product of 
zero-centered Gaussian variables, one contracts those variables in pairs 
and sums over all possible pair-contraction patterns. 
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As an example, the (1, 1) term involves the three diagrams shown in 
Fig. 3. We shall need the relation 

= V,b) ~a,. (3.11) 

which is a consequence of the basic assumption (2.8). 
Using (3.11 ), we can write diagram A as 

( P I I ' I ) A ( t ) )  = fs dr2 fo2dtl fO dt'2 f]'2 dttl I~al ( g2al ) ei(Si_eal)(tl_t2)l 

which shows that the basic block of Eq. (3.5) makes its appearance again. 
We thus apply to each contraction the rules found above, to write 

( P , I " ) A ( t ) ) = ( ~ t )  2 (3.13) 

Diagram B involves cross contractions, i.e., contractions that cross the 
dashed line. Using (3.11), one can see that the block (3.5) occurs again. 

time ~ time 

A " I 

6 t, t~ t ,; t; 6 

I I 

Fig. 3. 

I q , 
6 t~ t 2 t~ t I 0 

The  three d iag rams  arising f rom the p = 1, q = 1 te rm in the expans ion  of Eqs. (2.7) 
and  (2.13). 
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This will be a common feature of all the remaining terms! Rule (a) above 
Eq. (3.9) is valid for any contraction, but rule (b) is clearly needed only for 
non-cross-contractions. The equivalent of rule (c) is now the following: due 
to the g-functions of (3.5), t'~ = t~ and t~ = t2, so that we have two ordered 
times, t] and t2, to be integrated from 0 to t, giving t2/2!. The result is thus 

(P} ' , l ) , ( t ) )  = [ F(e,)/2 ] 2 t2/2! (3.14) 

Diagram C involves the special feature of crossing lines, which, due to 
the basic assumption (2.8), kill one summation, in contrast with diagrams 
A and B; its contribution can be easily seen to be of order t/p(ee) = t/tp(i), 
relative to A or B, and hence negligible. The fact that contractions with 
intersecting lines are negligible is a well known rule. (ga~ 

4. The term (4, 0) gives rise to the three diagrams of Fig. 4. 

For  diagram A we apply rules (a) and (b) and then realize that we are 
left with two ordered times to be integrated from 0 to t, giving t2/2!. The 
result is then 

Er(~,)/23 ~ t 2 
(PI2'~ - 2 2 2t (3.15) 

A 

t ime 

0 t~ t 2 13 t4 

I I t ime 

I 
I 
I I 

0 

B 

C) t~ t 2 t 3 14 
I I 

0 

I 

I 
t 

I t 

0 t~ t 2 t 3 t 4 t 0 

Fig. 4. The three diagrams arising from the (4, 0) term in the expansion (2.7), (2.13). 
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Diagram B does not contribute, because the time ordering, in addition 
to the &functions that occur, annihilates the integration domain. We thus 
find the rule that non-cross-contractions can only be contiguous. 

Finally, diagram C is negligible because it involves intersecting lines. 

5. From the above considerations, the only diagram that contributes 
to the term (p, 0) contains p contiguous non-cross-contractions, or 
"bubbles," thus giving 

(pl , ,o~(t))  = ( _ ) ~  Er(e,) /2]"  tp (3.16) 
2 p p! 

6. We consider the two diagrams of Fig. 5, taken from those that 
contr ibute to the term (2, 2). 

From rules (a) and (b), we have the following contributions for 
diagram A: 

four contractions =~ [F(ei)/2] 4 

two non-cross-contractions ~ ( 1/2)2 

The equivalent of rule (c) is now the following. Due to the cross- 
contractions we get &functions that can be used to eliminate t'l and t;, 
setting them equal to t3 and t4, respectively, and bringing them to the lhs 
of the diagram: we also have t; = t~, which can again be brought to the lhs 
of the diagram and integrated from t 4 t o  t. We are left with four ordered 
times on the lhs, to be integrated from 0 to t, giving t4/4!. We finally have 

[ F ( e , ) / 2 ]  4 t 4 
(PIR'2)A(t)) = 2 2 4! (3.17) 

A 

time time 

6 t, t 2 t 3 t o t~ t~ t~ t~ 6 

I 
I 
I 
I 

6 t~ t2 t3 to t t~, t~ t~ t 1' 6 

Fig. 5. Two of the diagrams arising from the (2, 2) term in the expansion (2.7), (2.13). 
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For diagram B, we again use the f-functions to bring all the times to 
the lhs. We have two times (tl = t2) and ( t ; =  t'l) varying independently 
(i.e., they are not ordered) from 0 to t3, and then the two ordered times t3 
and t4, to be integrated from 0 to r If tl and t'l were ordered, the whole 
time integral would give t4/4!; however, the two possibilities tl < t'~ and 
tt > t] give the same contribution, so that we get 2. t4/4!. The result is then 

E,ff'(~ i)/2 ] 4 14 
(P}2'21"(t)) = 22 2 "4~ (3.18) 

3 . 2 ,  T h e  G e n e r a l  R u l e s .  E v a l u a t i o n  o f  t h e  S u r v i v a l  
P r o b a b i l i t y  

We now collect the rules that we have found from the above analysis. 
First, the qualitative rules: 

1. Only contractions with nonintersecting lines contribute. 

2. Non-cross-contractions can only be contiguous (bubbles). 

3. The number of cross-contractions must be even (2k). 

The structure of the general diagram is illustrated in Fig. 6. It has the 
following characteristics: 

(a) There are 2p times on the lhs and 2q on the rhs. 

(b) There are (2p + 2q)/2 = p + q contractions. Out of these, 2k are 
cross-contractions; there are left ( 2 p -  2k)/2 = p - k  bubbles on 
the lhs and ( 2 q -  2k)/2 = q -  k on the rhs. 

(c) We have the relations 

2 k +  1 

ni + k =  p (3.19a) 
/ = 1  

2 k +  1 

n; + k = q (3.19b) 
i = 1  

t ime :D 

1 

I ~-~'" " 
C) 2% times 

n~ bubbles 

( ~ , ' ' - Z  

n z bubbles 

. . .  2 k ]  (--~ . . .  (-x, 
( -~ . , .  (..~ ] " ' "  

. . . nzk+t bubbles n~ , t  bubbtes . . .  

<t ime 

2n'~ t imes 0 
n' z bubbles n' t bubbles 

Fig. 6. The general diagram arising from the expansion (2.7), (2.13). 
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We now have the following numerical contributions to the (p, q) term: 

1. A factor ( - ) P + q  

2. Each contraction gives a factor F(ei)/2 ~ EF(ei)/2] p+q. 

3. Each bubble gives a factor 1/2 ~ (1/2) p+q-2k. 
4. Time integrations. We bring all the times to the lhs. As a result, we 

have nl +n'1 bubbles between 0 and the first cross-contraction, nz+n' 2 
between the first and the second cross-contraction, etc. The number of time 
variables to be integrated from 0 to t is thus 

( n l + n ' l ) +  .-- + (n2k+~ + n ~ k + ~ ) + 2 k = p + q  (3.20) 

If these p + q time variables were all ordered, the final time integral 
from 0 to t would give tP+q/(p+ q)!. This is not the case, though. The 2k 
times associated with the cross-contractions are indeed ordered; between 
the ( i - 1 ) t h  and the ith cross-contractions we have ni+n; bubbles, of 
which n i are ordered among themselves, n~ are also ordered among them- 
selves, but the ni ones can be in any position relative to the n; ones: the 
total number of possibilities for the ith interval is thus the number of 
permutations of n i+  n~ objects, disregarding the permutations of n~ and 
n~ objects separately; i.e., (n~ + n~)!/(n~! n~!). 

The final result of the time integrations is thus 

lP+q 2k+l(ni+n~l~ 
(p+q) !  i_~ n~ / 

Collecting the above results and summing over all allowed diagrams, 
we find the survival probability of Eq. (2.13), before averaging over initial 
states, as 

(P,(t)~= ~ (-)P+q[F(e')/Z]P+q tP+q 
2 p+q-2~: (p+q)! pqk 

{,,}{,)} k nl / \ nZk+l 

The prime in the last summation indicates that the restrictions (3.19) have 
to be enforced. 

Using Eq. (19) of Ref. 17, we can evaluate the last sum in Eq. (3.21), 
with the result 

{n,}{nl ~} 
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The remaining sums in (3.21) can also be performed, the result being 

(Pc(t)) =�89 + e  r(~,)t] (3.23) 

Averaging over initial states as in (2.13), we finally have 

(P( t ) )  = l[1 + (e-r(~)~)~] (3.24) 

where ( . - . ) ~  indicates the thermal average 

1 
(e r(~)t) /~=~f ~ e-r(~)'e-~p(e)de (3.25) 

with Z the bath partition function of Eq. (2.3). 
Equation (3.24) is our main result. A discussion of some of its proper- 

ties is given in the next section. 

4. P R O P E R T I E S  OF T H E  S U R V I V A L  P R O B A B I L I T Y  

We first observe that, if we expand the exponential in (3.23), we get 
back the first-order result (3.9) provided by the golden rule. 

On the other hand, as t ~ 0% the survival probability tends to 1/2, 
indicating that both states of the system, c~= _+1, become equally 
populated. 

From (3.24) we can calculate the transition probability as 

( P I ~  _ l ( t ) ) = � 8 9  (e-r(~)t)~] (4.t) 

We can also calculate the polarization H(t), defined as 

H(t) =- (az)  (4.2) 

where the bracket denotes a quantum mechanical plus an ensemble 
average. Writing az = l1 ) ( l l -  l - 1 ) ( -  11, we can express the polari- 
zation as 

H ( t )  = ~ P ( t ) )  - -  ~ P l  ~ l ( t ) )  (4.3) 

Using (3.24) and (4.1), we then find 

H(t) = (e-r(~)')~ (4.4) 

We now center our discussion on this last quantity. 
It is clear from (3.23) that before averaging over initial states we get 

an exponential decay for the polarization, for any i. However, if F(ai) 
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depends on ei, each initial state contributes with its own decay probability 
to the average (4.4) and the result is, in general, a nonexponential decay 
law. 

Therefore, if F(e) is a constant, independent of e, i.e., 

F(e)=F (4.5) 

the polarization (4.4) shows the exponential decay 

H(t) =e r, (4.6) 

For a nonconstant F(e), even a slow energy dependence may be 
important in distorting the exponential (4.6), since F(e) occurs in the 
exponent in Eq. (4.4). We write (4.4) as 

exp[ - F(e) t -  ~e + In p(e)] de (4.7) 
H ( t ) = ~  ~ e x p [ - / / e + l n p ( e ) ] d e  

and evaluate the two integrals in the saddle-point approximation. The 
equation for the saddles e 0 and el arising from the denominator and 
numerator, respectively, are 

d in  p(e)] 
�9 ~/e J~o = fl ( 4 . 8 a )  

[glne( )] 
de J~= fl + F'(el)t (4.8b) 

Assuming that one gets only one saddle eo and one el, we have 

I- - Ed: In p(e)/de2]~o ]1/2 
H ( t ) = e - r ( ~ ' ) ' L F , , ( e l ) t _ - ~ i - ~ n ~ 2 ] ~ j  ~ e  ~(~~ ~') (4.9) 

As a check, when F(~)= F, the two saddles are identical and (4.9) 
reduces to (4.6). 

Equation (4.9) gives the general structure of the result: there is an 
explicit time dependence in the exponential and inside the square root, as 
well as a dependence on time through the position of the saddle el, since t 
appears explicitly in the saddle equation (4.8b). More explicit results can 
only be obtained with a more specific form for F(e) and p(e). 

5. S U M M A R Y  A N D  D ISCUSSION 

The survival probability was written in Eq. (2.7) as a series in powers 
of the system-bath interaction. We proposed, for the latter, a random- 
matrix model--a  "local G O E ' - - t h a t  allowed the calculation of the ensem- 
ble average of every term of the above expansion; the time involved was 
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requested to be large compared with a time on the order of the duration of 
a collision and small compared with a recurrence, or Poincar6, time [see 
inequality (3.7)]. The whole series could actually be summed, giving the 
final exponential law (3.23) when we fix the initial state of the bath. When 
we average over initial states, we may get a mixture of decay constants that 
could destroy the exponential behavior [-see Eqs. (3.24), (4.1), (4.4)]. We 
observe that no restriction was ever imposed on the strength of the interac- 
tion, in contrast with the weak coupling assumption sometimes made in the 
literature. (6) 

As was remarked in the Introduction, Eq. (1.2) represents the total 
time-independent Hamiltonian. Thus, there is no need in this approach to 
make assumptions on the correlation time of any time-dependent interac- 
tion, as is frequently done in the literature. (11 15) Indeed, any time 
dependence follows as a consequence of the model. For  instance, in the 
interaction representation the wave function 15u)i satisfies the equation 

i N I ~ ) ~ =  ~ ( t ) [ ~ ) I  (5.1) 

where ~U(t) is given in Eq. (2.6). The matrix elements of " f ( t )  are 

(~al ~ ( t ) I /~b) - -6= ,  t~Vabe i(~" Eb), (5.2) 

Since II Vc~bll is a random matrix, (5.2) is a random, time-dependent matrix, 
whose properties follow from (5.2) and the definition of the ensemble for 
the Vab. In particular, the time correlation of two matrix elements like (5.2) 
is periodic. 

Our result (3.23) is so simple that a more direct derivation of it would 
certainly be welcome. A cumulant expansion associated with a random 
Gaussian operator can be cut if its correlation time is very short(~3); but 
this is not the case here, as remarked in the previous paragraph, so that we 
cannot offer this argument as an explanation for (3.23). What seems to be 
playing a similar role in the present analysis is the inequality tool~ ,~ t. In 
any case, the question deserves a closer examination. 

We mentioned that our results are valid above a certain minimum 
temperature if the interaction matrix has the structure shown in Fig. 1. An 
extension of the analysis to avoid this limitation would be desirable. We 
also mentioned that the golden rule (which gives the first-order term) is 
obtained under more general conditions on the structure of the interaction 
than those used here (however, on approaching threshold one needs longer 
and longer times for its validity). The structure of V that we do assume 
permits the evaluation of the expansion to all orders; whether an ensemble 
average can still be calculated for all the terms under more general 
conditions is certainly worth investigating. 
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Our  results cannot  be directly compared  with those of the comprehen-  
sive study of  Ref. 8, for two reasons: (1) In our  model  Hamil tonian  (1.2) 
the system has no dynamics  of  its own, whereas in Ref. 8 it does; (2) in the 
present paper, it is the sys tem-bath  interaction that causes transitions 
between the two relevant states of  the system (eigenstates of az), whereas in 
Ref. 8 such transitions are caused by the system Hamil tonian  itself, which is 
propor t iona l  to ax. Perhaps there is a closer connect ion with two related 
problems (which, in turn, can be related to the spin-boson problem), also 
discussed in Ref. 8: the K o n d o  and the Toulouse problems (see, for 
instance, Ref. 8, Sections I I I E  and VB, respectively), where one considers a 
"bath"  Hamil tonian,  and a "sys tem-bath"  interaction responsible for 
causing transitions: indeed, the exponential  decay derived in the previous 
section of the present paper  is consistent with the behavior  reported in 
Eq. (5.27) of Ref. 8. 

The inclusion of  the system Hamil tonian ment ioned above is certainly 
a very impor tan t  one, which gives rise to a host  of very interesting 
effects.~l 8~ The model  Hamil tonian  (1.2) studied here thus has to be taken 
as a starting point, from which we plan to analyze various extensions in the 
future. 
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